
Memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

• CPU accesses physical memory over a bus

• Devices access memory over I/O bus with DMA

• Devices can appear to be a region of memory
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Realistic ~2005 PC architecture

Advanced
Programable

Interrupt
Controller

bus

I/O
APIC

CPU

North

South
Bridge

bus
ISA

CPU

USB

bus
AGP

PCI
IRQsbus

PCI

Bridge
Main

memory

front-
side
bus

2 / 40

Modern PC architecture (intel)

CPU0 CPU1DRAM DRAM

x58 IOH

QPI

QPI QPI

[intel]

DMI

PCI express

3 / 40

What is memory?

• SRAM – Static RAM

- Like two NOT gates circularly wired input-to-output

- 4–6 transistors per bit, actively holds its value

- Very fast, used to cache slower memory

• DRAM – Dynamic RAM

- A capacitor + gate, holds charge to indicate bit value

- 1 transistor per bit – extremely dense storage

- Charge leaks – need slow comparator to decide if bit 1 or 0

- Must re-write charge a)er reading, and periodically refresh

• VRAM – “Video RAM”

- Dual ported DRAM, can write while someone else reads
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What is I/O bus? E.g., PCI

5 / 40

Communicating with a device

• Memory-mapped device registers

- Certain physical addresses correspond to device registers

- Load/store gets status/sends instructions – not real memory

• Device memory – device may havememory OS can write to
directly on other side of I/O bus

• Special I/O instructions

- Some CPUs (e.g., x86) have special I/O instructions

- Like load & store, but asserts special I/O pin on CPU

- OS can allow user-mode access to I/O ports at byte granularity

• DMA – place instructions to card in mainmemory

- Typically then need to “poke” card by writing to register

- Overlaps unrelated computation with moving data over (typically
slower thanmemory) I/O bus
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x86 I/O instructions
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Example: parallel port (LPT1)

• Simple hardware has three control registers:

D7 D6 D5 D4 D3 D2 D1 D0
read/write data register (port 0x378)

BSY ACK PAP OFON ERR – – –
read-only status register (port 0x379)

– – – IRQ DSL INI ALF STR [Messmer]
read/write control register (port 0x37a)

• Every bit except IRQ corresponds to a pin on 25-pin connector:

1     
2

3

4

5
6

7
8

9

10

11
12

13

14
15
16
17
18
19
20
21
22
23
24
25

OFON

PAP
BSY

ACK

Data Out

STR

7

6
5

4

3

2
1

0

Ground

DSL

INI

ERR

ALF
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Writing bit to parallel port [osdev]
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IDE disk driver
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Memory-mapped IO

•
✐♥/♦✉) instructions slow and clunky

- Instruction format restricts what registers you can use

- Only allows 216 di4erent port numbers

- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts)

• Devices can achieve same e#ect with physical addresses, e.g.:

✈♦❧❛)✐❧❡ ✐♥)✸✷❴) ✯❞❡✈✐❝❡❴❝♦♥)K♦❧

❂ ✭✐♥)✸✷❴) ✯✮ ✭✵①❝✵✶✵✵ ✰ D❍❨❙❴❇❆❙❊✮❀

✯❞❡✈✐❝❡❴❝♦♥)K♦❧ ❂ ✵①✽✵❀

✐♥)✸✷❴) $)❛)✉$ ❂ ✯❞❡✈✐❝❡❴❝♦♥)K♦❧❀

- OSmust map physical to virtual addresses, ensure non-cachable

• Assign physical addresses at boot to avoid conflicts. PCI:

- Slow/clunky way to access configuration registers on device

- Use that to assign ranges of physical addresses to device
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DMA bu'ers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

• Idea: only use CPU to transfer control requests, not data

• Include list of bu#er locations in mainmemory

- Device reads list and accesses bu4ers through DMA

- Descriptions sometimes allow for scatter/gather I/O
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Example: Network Interface Card

H
o

st
 I

/O
 b

u
s

Adaptor

Network link
Bus

interface
Link

interface

• Link interface talks to wire/fiber/antenna

- Typically does framing, link-layer CRC

• FIFOs on card provide small amount of bu#ering

• Bus interface logic uses DMA tomove packets to and from
bu#ers in mainmemory
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Example: IDE disk read w. DMA
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Driver architecture

• Device driver provides several entry points to kernel

- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?

- E.g., Need to knowwhen transmit bu4ers free or packets arrive

- Need to knowwhen disk request complete

• One approach: Polling

- Sent a packet? Loop asking card when bu4er is free

- Waiting to receive? Keep asking card if it has packet

- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?
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Driver architecture

• Device driver provides several entry points to kernel

- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?

- E.g., Need to knowwhen transmit bu4ers free or packets arrive

- Need to knowwhen disk request complete

• One approach: Polling

- Sent a packet? Loop asking card when bu4er is free

- Waiting to receive? Keep asking card if it has packet

- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

- Can’t use CPU for anything else while polling

- Schedule poll in future? High latency to receive packet or process
disk block bad for response time
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Interrupt driven devices

• Instead, ask card to interrupt CPU on events

- Interrupt handler runs at high priority

- Asks card what happened (xmit bu4er free, new packet)

- This is what most general-purpose OSes do

• Bad under high network packet arrival rate

- Packets can arrive faster than OS can process them

- Interrupts are very expensive (context switch)

- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and
never make any progress – receive livelock

- Best: Adaptive switching between interrupts and polling

• Very good for disk requests

• Rest of today: Disks (network devices in 3 lectures)
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Anatomy of a disk [Ruemmler]

• Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM

- Drive speed dri)s slowly over time

- Can’t predict rotational position a)er 100-200 revolutions

• Disk arm assembly

- Arms rotate around pivot, all move together

- Pivot o4ers some resistance to linear shocks

- One disk head per recording surface (2×platters)

- Sensitive to motion and vibration [Gregg] (demo on youtube)

17 / 40



Disk
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Disk
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Disk
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Storage on amagnetic platter

• Platters divided into concentric tracks

• A stack of tracks of fixed radius is a cylinder

• Heads record and sense data along cylinders

- Significant fractions of encoded stream for error correction

• Generally only one head active at a time

- Disks usually have one set of read-write circuitry

- Must worry about cross-talk between channels

- Hard to keepmultiple heads exactly aligned
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Cylinders, tracks, & sectors
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Disk positioning system

• Move head to specific track and keep it there

- Resist physical shocks, imperfect tracks, etc.

• A seek consists of up to four phases:

- speedup–accelerate arm tomax speed or half way point

- coast–at max speed (for long seeks)

- slowdown–stops arm near destination

- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)

• Short (200-400 cyl.) seeks dominated by speedup

- Accelerations of 40g
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Seek details

• Head switches comparable to short seeks

- May also require head adjustment

- Settles take longer for writes than for reads – Why?

• Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g.,∼500ms recalibration every∼25 min bad for AV

• “Average seek time” quoted can bemany things

- Time to seek 1/3 disk, 1/3 time to seek whole disk
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Seek details

• Head switches comparable to short seeks

- May also require head adjustment

- Settles take longer for writes than for reads

If read strays from track, catch error with checksum, retry

If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g.,∼500ms recalibration every∼25 min bad for AV

• “Average seek time” quoted can bemany things

- Time to seek 1/3 disk, 1/3 time to seek whole disk
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Sectors

• Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks

- Written atomically (even if there is a power failure)

• Disk maps logical sector #s to physical sectors

- Zoning–puts more sectors on longer tracks

- Track skewing–sector 0 pos. varies by track (why?)

- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping

- Larger logical sector # di4erence means longer seek time

- Highly non-linear relationship (and depends on zone)

- OS has no info on rotational positions

- Can empirically build table to estimate times
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Sectors

• Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks

- Written atomically (even if there is a power failure)

• Disk maps logical sector #s to physical sectors

- Zoning–puts more sectors on longer tracks

- Track skewing–sector 0 pos. varies by track (sequential access speed)

- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping

- Larger logical sector # di4erence means longer seek time

- Highly non-linear relationship (and depends on zone)

- OS has no info on rotational positions

- Can empirically build table to estimate times
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Disk interface

• Controls hardware, mediates access

• Computer, disk o0en connected by bus (e.g., ATA, SCSI, SATA)

- Multiple devices may contentd for bus

• Possible disk/interface features:

• Disconnect from bus during requests

• Command queuing: Give disk multiple requests

- Disk can schedule them using rotational information

• Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution

- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching

- But data not stable—not suitable for all requests
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SCSI overview [Schmidt]

• SCSI domain consists of devices and an SDS

- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices—e.g., SCSI bus

• SCSI-2 bus (SDS) connects up to 8 devices

- Controllers can have> 1 “logical units” (LUNs)

- Typically, controller built into disk and 1 LUN/target, but “bridge
controllers” canmanagemultiple physical devices

• Each device can assume role of initiator or target

- Traditionally, host adapter was initiator, controller target

- Now controllers act as initiators (e.g., COPY command)

- Typical domain has 1 initiator,≥ 1 targets
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SCSI requests

• A request is a command from initiator to target

- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect
(very important for multiple targets or evenmultitasking)

• Commands contain the following:

- Task identifier—initiator ID, target ID, LUN, tag

- Command descriptor block—e.g., read 10 blocks at pos. N

- Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE

- Optional: output/input bu4er, sense data

- Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . .
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Executing SCSI commands

• Each LUNmaintains a queue of tasks

- Each task is DORMANT, BLOCKED, ENABLED, or ENDED

- SIMPLE tasks are dormant until no ordered/head of queue

- ORDERED tasks dormant until no HoQ/more recent ordered

- HOQ tasks begin in enabled state

• Taskmanagement commands available to initiator

- Abort/terminate task, Reset target, etc.

• Linked commands

- Initiator can link commands, so no intervening tasks

- E.g., could use to implement atomic read-modify-write

- Intermediate commands return status byte INTERMEDIATE
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SCSI exceptions and errors

• A0er error stop executing most SCSI commands

- Target returns with CHECK CONDITION status

- Initiator will eventually notice error

- Must read specifics w. REQUEST SENSE

• Prevents unwanted commands from executing

- E.g., initiator may not want to execute 2nd write if 1st fails

• Simplifies device implementation

- Don’t need to remember more than one error condition

• Samemechanism used to notify of media changes

- I.e., ejected tape, changed CD-ROM
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Disk performance

• Placement & ordering of requests a huge issue

- Sequential I/O much, much faster than random

- Long seeks much slower than short ones

- Power might fail any time, leaving inconsistent state

• Must be careful about order for crashes

- More on this in next two lectures

• Try to achieve contiguous accesses where possible

- E.g., make big chunks of individual files contiguous

• Try to order requests to minimize seek times

- OS can only do this if it has a multiple requests to order

- Requires disk I/O concurrency

- High-performance apps try to maximize I/O concurrency

• Next: How to schedule concurrent requests
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Scheduling: FCFS

• “First Come First Served”

- Process disk requests in the order they are received

• Advantages

• Disadvantages
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Scheduling: FCFS

• “First Come First Served”

- Process disk requests in the order they are received

• Advantages

- Easy to implement

- Good fairness

• Disadvantages

- Cannot exploit request locality

- Increases average latency, decreasing throughput
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FCFS example
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Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

• Disadvantages

❡✛ ♣♦$ ✇❛✐(
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Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

- Exploits locality of disk requests

- Higher throughput

• Disadvantages

- Starvation

- Don’t always knowwhat request will be fastest

• Improvement?
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Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

- Exploits locality of disk requests

- Higher throughput

• Disadvantages

- Starvation

- Don’t always knowwhat request will be fastest

• Improvement: Aged SPTF

- Give older requests higher priority

- Adjust “e4ective” seek time with weighting factor:
T
❡✛

= T
♣♦$

−W · T
✇❛✐(
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SPTF example
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“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages

• Disadvantages
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“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction

- Switch directions only if no further requests

• Advantages

- Takes advantage of locality

- Bounded waiting

• Disadvantages

- Cylinders in the middle get better service

- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook

- (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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CSCAN example
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VSCAN(r)

• Continuum between SPTF and SCAN

- Like SPTF, but slightly changes “e4ective” positioning time
If request in same direction as previous seek: T

❡✛

= T
♣♦$

Otherwise: T
❡✛

= T
♣♦$

+ r · T
♠❛①

- when r = 0, get SPTF, when r = 1, get SCAN

- E.g., r = 0.2 works well

• Advantages and disadvantages

- Those of SPTF and SCAN, depending on how r is set

• See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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Flashmemory

• Today, people increasingly using flashmemory

• Completely solid state (nomoving parts)

- Remembers data by storing charge

- Lower power consumption and heat

- Nomechanical seek times to worry about

• Limited # overwrites possible

- Blocks wear out a)er 10,000 (MLC) – 100,000 (SLC) erases

- Requires flash translation layer (FTL) to providewear leveling, so
repeated writes to logical block don’t wear out physical block

- FTL can seriously impact performance

- In particular, randomwrites very expensive [Birrell]

• Limited durability

- Charge wears out over time

- Turn o4 device for a year, you can potentially lose data
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Types of flashmemory

• NAND flash (most prevalent for storage)

- Higher density (most used for storage)

- Faster erase and write

- More errors internally, so need error correction

• NOR flash

- Faster reads in smaller data units

- Can execute code straight out of NOR flash

- Significantly slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)

- MLC encodes multiple bits in voltage level

- MLC slower to write than SLC

- MLC has lower durability (bits decay faster)
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NAND Flash Overview

• Flash device has 2112-byte pages

- 2048 bytes of data + 64 bytes metadata & ECC

• Blocks contain 64 (SLC) or 128 (MLC) pages

• Blocks divided into 2–4 planes

- All planes contend for same package pins

- But can access their blocks in parallel to overlap latencies

• Can read one page at a time

- Takes 25 µsec + time to get data o4 chip

• Must erasewhole block before programing

- Erase sets all bits to 1—very expensive (2 msec)

- Programming pre-erased block requires moving data to internal
bu4er, then 200 (SLC)–800 (MLC) µsec

39 / 40



Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) 2048+32 2048+64
Block Size (Pages) 64 128
Read Latency (µ ) 25 25
Write Latency (µ ) 200 800
Erase Latency (µ ) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0
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File system fun

• File systems: traditionally hardest part of OS

- More papers on FSes than any other single topic

• Main tasks of file system:

- Don’t go away (ever)

- Associate bytes with name (files)

- Associate names with each other (directories)

- Can implement file systems on disk, over network, in memory, in
non-volatile ram (NVRAM), on tape, w/ paper.

- We’ll focus on disk and generalize later

• Today: files, directories, and a bit of performance
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Why disks are di!erent

• Disk = First state we’ve seen that doesn’t go away

diskmemory

CRASH!

- So: Where all important state ultimately resides

• Slow (milliseconds access vs. nanoseconds for memory)

normalized
speed

year

Processor speed: 2×/18

Disk access time: 7%/

• Huge (100–1,000x bigger thanmemory)

- How to organize large collection of ad hoc information?

- File System: Hierarchical directories, Metadata, Search
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Disk vs. Memory

MLC NAND
Disk Flash DRAM

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8ms 3-10 µ 50 ns
Randomwrite 8 ms 9-11 µ * 50 ns
Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s
Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s
Cost $0.03/GB $0.35/GB $6/GiB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time
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Disk review

• Disk reads/writes in terms of sectors, not bytes

- Read/write single sector or adjacent groups

• How to write a single byte? “Read-modify-write”

- Read in sector containing the byte

- Modify that byte

- Write entire sector back to disk

- Key: if cached, don’t need to read in

• Sector = unit of atomicity.

- Sector write done completely, even if crash in middle
(disk saves up enoughmomentum to complete)

• Larger atomic units have to be synthesized by OS
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Some useful trends

• Disk bandwidth and cost/bit improving exponentially

- Similar to CPU speed, memory size, etc.

• Seek time and rotational delay improving very slowly

- Why? require moving physical object (disk arm)

• Disk accesses a huge system bottleneck & getting worse

- Bandwidth increase lets system (pre-)fetch large chunks for about
the same cost as small chunk.

- Trade bandwidth for latency if you can get lots of related stu4.

• Desktopmemory size increasing faster than typical workloads

- More andmore of workload fits in file cache

- Disk tra4ic changes: mostly writes and new data

• Memory and CPU resources increasing

- Usememory and CPU tomake better decisions

- Complex prefetching to support more IO patterns

- Delay data placement decisions reduce random IO
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Files: named bytes on disk

• File abstraction:

- User’s view: named sequence of bytes

- FS’s view: collection of disk blocks

- File system’s job: translate name & o4set to disk blocks:

{file, o4set}−−→ FS −→disk address

• File operations:

- Create a file, delete a file

- Read from file, write to file

• Want: operations to have as few disk accesses as possible &
haveminimal space overhead (group related things)
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What’s hard about grouping blocks?

• Like page tables, file systemmetadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #

23−−−−−−−−−−→ Page table −−−−−−−−−−→33

- File metadata: map byte o4set to disk block address

512−−−−−−−−−→ Unix inode −−−−−→8003121

- Directory: map name to disk address or file #

foo.c−−−−−−−−→ directory −−−−−−−−−−→44

7 / 38

FS vs. VM

• In both settings, want location transparency

- Application shouldn’t care about particular disk blocks or physical
memory locations

• In someways, FS has easier job than than VM:

- CPU time to do FSmappings not a big deal (= no TLB)

- Page tables deal with sparse address spaces and random access,
files o7en denser ( . . . − ),∼sequentially accessed

• In someways FS’s problem is harder:

- Each layer of translation = potential disk access

- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files<10 KB, some files many GB
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Someworking intuitions

• FS performance dominated by # of disk accesses

- Say each access costs∼10 milliseconds

- Touch the disk 100 extra times = 1 second

- Can do a billion ALU ops in same time!

• Access cost dominated bymovement, not transfer:

seek time+ rotational delay+ # bytes/disk-bw

- 1 sector: 5ms + 4ms + 5µs (≈ /( / ))≈ 9ms

- 50 sectors: 5ms + 4ms + .25ms = 9.25ms

- Can get 50x the data for only∼3%more overhead!

• Observations that might be helpful:

- All blocks in file tend to be used together, sequentially

- All files in a directory tend to be used together

- All names in a directory tend to be used together

9 / 38

Common addressing patterns

• Sequential:

- File data processed in sequential order

- By far the most commonmode

- Example: editor writes out new file, compiler reads in file, etc

• Random access:

- Address any block in file directly without passing through
predecessors

- Examples: data set for demand paging, databases

• Keyed access

- Search for block with particular values

- Examples: associative data base, index

- Usually not provided by OS
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Problem: how to track file’s data

• Disk management:

- Need to keep track of where file contents are on disk

- Must be able to use this to map byte o4set to disk block

- Structure tracking a file’s sectors is called an index node or inode

- Inodes must be stored on disk, too

• Things to keep in mind while designing file structure:

- Most files are small

- Much of the disk is allocated to large files

- Many of the I/O operations are made to large files

- Want good sequential and good random access
(what do these require?)
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Strawman: contiguous allocation

• “Extent-based”: allocate files like segmentedmemory

- When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

• Example: IBM OS/360

• Pros?

• Cons? (Think of corresponding VM scheme)
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Strawman: contiguous allocation

• “Extent-based”: allocate files like segmentedmemory

- When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

• Example: IBM OS/360

• Pros?

- Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)

- External fragmentation
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Strawman #2: Linked files

• Basically a linked list on disk.

- Keep a linked list of all free blocks

- Inode contents: a pointer to file’s first block

- In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT

• Pros?

• Cons?

13 / 38

Strawman #2: Linked files

• Basically a linked list on disk.

- Keep a linked list of all free blocks

- Inode contents: a pointer to file’s first block

- In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT

• Pros?

- Easy dynamic growth & sequential access, no fragmentation

• Cons?

- Linked lists on disk a bad idea because of access times

- Random very slow (e.g., traverse whole file to find last block)

- Pointers take up room in block, skewing alignment
13 / 38

Example: DOS FS (simplified)

• Linked files with key optimization: puts links in fixed-size
“file allocation table” (FAT) rather than in the blocks.

Directory (5)

a: 6

b: 2

FAT (16-bit entries)

free0

eof1

12

eof3

34

eof5

46
. . .

6

file a

4 3

2

file b

1

• Still do pointer chasing, but can cache entire FAT so can be
cheap compared to disk access
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FAT discussion

• Entry size = 16 bits

- What’s the maximum size of the FAT?

- Given a 512 byte block, what’s the maximum size of FS?

- One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:

- 2 bytes / 512 byte block =∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk

- State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

- Fixed location on disk:
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FAT discussion

• Entry size = 16 bits

- What’s the maximum size of the FAT? 65,536 entries

- Given a 512 byte block, what’s the maximum size of FS? 32 MiB

- One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:

- 2 bytes / 512 byte block =∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk

- State duplication a very common theme in reliability

• Bootstrapping: where is root directory?

- Fixed location on disk:
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Another approach: Indexed files

• Each file has an array holding all of its block pointers

- Just like a page table, so will have similar issues

- Max file size fixed by array’s size (static or dynamic?)

- Allocate array to hold file’s block pointers on file creation

- Allocate actual blocks on demand using free list

• Pros?

• Cons?
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Another approach: Indexed files

• Each file has an array holding all of its block pointers

- Just like a page table, so will have similar issues

- Max file size fixed by array’s size (static or dynamic?)

- Allocate array to hold file’s block pointers on file creation

- Allocate actual blocks on demand using free list

• Pros?

- Both sequential and random access easy

• Cons?

- Mapping table requires large chunk of contiguous space
. . .Same problemwe were trying to solve initially
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Indexed files

• Issues same as in page tables

- Large possible file size = lots of unused entries

- Large actual size? table needs large contiguous disk chunk

• Solve identically: small regions with index array, this array
with another array, . . . Downside?
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Multi-level indexed files (old BSD FS)

• Solve problem of first block access slow

• inode = 14 block pointers + “stu0”
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Old BSD FS discussion

• Pros:

- Simple, easy to build, fast access to small files

- Maximum file length fixed, but large.

• Cons:

- What is the worst case # of accesses?

- What is the worst-case space overhead? (e.g., 13 block file)

• An empirical problem:

- Because you allocate blocks by taking them o4 unordered freelist,
metadata and data get strewn across disk
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More about inodes

• Inodes are stored in a fixed-size array

- Size of array fixed when disk is initialized; can’t be changed

- Lives in known location, originally at one side of disk:

- Now is smeared across it (why?)

- The index of an inode in the inode array called an i-number

- Internally, the OS refers to files by inumber

- When file is opened, inode brought in memory

- Written back whenmodified and file closed or time elapses

20 / 38



Directories

• Problem:

- “Spend all day generating data, come back the next morning, want
to use it.” – F. Corbato, on why files/dirs invented

• Approach 0: Users remember where on disk their files are

- E.g., like remembering your social security or bank account #

• Yuck. People want human digestible names

- We use directories to map names to file blocks

• Next: What is in a directory and why?
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A short history of directories

• Approach 1: Single directory for entire system

- Put directory at known location on disk

- Directory contains 〈 , 〉 pairs

- If one user uses a name, no one else can

- Many ancient personal computers work this way

• Approach 2: Single directory for each user

- Still clumsy, and on 10,000 files is a real pain

• Approach 3: Hierarchical name spaces

- Allow directory to map names to files or other dirs

- File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)
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Hierarchical Unix

• Used since CTSS (1960s)

- Unix picked up and used really nicely

• Directories stored on disk just like regular files

- Special inode type byte set to directory

- User’s can read just like any other file

- Only special syscalls can write (why?)

- Inodes at fixed disk location

- File pointed to by the index may be
another directory

- Makes FS into hierarchical tree (what
needed to make a DAG?)

name inode

• Simple, plus speeding up file ops speeds up dir ops!
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Namingmagic

• Bootstrapping: Where do you start looking?

- Root directory always inode #2 (0 and 1 historically reserved)

• Special names:

- Root directory: “ ”

- Current directory: “ ”

- Parent directory: “ ”

• Some special names are provided by shell, not FS:

- User’s home directory: “∼”

- Globbing: “ ” expands to all files starting “ ”

• Using the given names, only need two operations to navigate
the entire name space:

- name: move into (change context to) directory name

- : enumerate all names in current directory (context)
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Unix example:
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Default context: working directory

• Cumbersome to constantly specify full path names

- In Unix, each process has a “current working directory” (cwd)

- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, . . . )
with openat syscall instead of open

• Shells track a default list of active contexts

- A “search path” for programs you run

- Given a search path A : B : C, a shell will check in A, then check in B,
then check in C

- Can escape using explicit paths: “./foo”

• Example of locality
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Hard and so% links (synonyms)

• More than one dir entry can refer to a given file

- Unix stores count of pointers
(“hard links”) to inode

- Tomake: “ ” creates a
synonym ( ) for file

inode #31279
refcount = 2

• So4/symbolic links = synonyms for names

- Point to a file (or dir) name, but object can be deleted from
underneath it (or never even exist).

- Unix implements like directories: inode has special
“symlink” bit set and contains name of link target

refcount = 1

- When the file system encounters a symbolic link it automatically
translates it (if possible).
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Case study: speeding up FS

• Original Unix FS: Simple and elegant:

• Components:

- Data blocks

- Inodes (directories represented as files)

- Hard links

- Superblock. (specifies number of blks in FS, counts of max # of
files, pointer to head of free list)

• Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk
transfers!
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A plethora of performance costs

• Blocks too small (512 bytes)

- File index too large

- Toomany layers of mapping indirection

- Transfer rate low (get one block at time)

• Poor clustering of related objects:

- Consecutive file blocks not close together

- Inodes far from data blocks

- Inodes for directory not close together

- Poor enumeration performance: e.g., “ ”, “ ”

• Usability problems

- 14-character file names a pain

- Can’t atomically update file in crash-proof way

• Next: how FFS fixes these (to a degree) [McKusic]
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Problem: Internal fragmentation

• Block size was too small in Unix FS

• Why not just make block size bigger?

Block size space wasted file bandwidth
512 6.9% 2.6%
1024 11.8% 3.3%
2048 22.4% 6.4%
4096 45.6% 12.0%
1MB 99.0% 97.2%

• Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?

- Use idea frommalloc: split unused portion.
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Solution: fragments

• BSD FFS:

- Has large block size (4096 or 8192)

- Allow large blocks to be chopped into small ones (“fragments”)

- Used for little files and pieces at the ends of files

• Best way to eliminate internal fragmentation?

- Variable sized splits of course

- Why does FFS use fixed-sized fragments (1024, 2048)?
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Clustering related objects in FFS

• Group sets of consecutive cylinders into “cylinder groups”

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group

- Tries to put everything not related in di4erent group
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Clustering in FFS

• Tries to put sequential blocks in adjacent sectors

- (Access one block, probably access next)

• Tries to keep inode in same cylinder as file data:

- (If you look at inode, most likely will look at data too)

• Tries to keep all inodes in a dir in same cylinder group

- Access one name, frequently access many, e.g., “ ”
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What does disk layout look like?

• Each cylinder group basically a mini-Unix file system:

superblocks

cylinder
groups

inodes data blocks

information
bookkeeping

• How how to ensure there’s space for related stu0?

- Place di4erent directories in di4erent cylinder groups

- Keep a “free space reserve” so can allocate near existing things

- When file grows too big (1MB) send its remainder to di4erent
cylinder group.
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Finding space for related objs

• Old Unix (& DOS): Linked list of free blocks

- Just take a block o4 of the head. Easy.

- Bad: free list gets jumbled over time. Finding adjacent blocks hard
and slow

• FFS: switch to bit-map of free blocks

- 1010101111111000001111111000101100

- Easier to find contiguous blocks.

- Small, so usually keep entire thing in memory

- Time to find free block increases if fewer free blocks
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Using a bitmap

• Usually keep entire bitmap in memory:

- 4G disk / 4K byte blocks. How big is map?

• Allocate block close to block x?

- Check for blocks near x

- If disk almost empty, will likely find one near

- As disk becomes full, search becomes more expensive and less
e4ective

• Trade space for time (search time, file access time)

• Keep a reserve (e.g, 10%) of disk always free, ideally
scattered across disk

- Don’t tell users ( can get to 110% full)

- Only root can allocate blocks once FS 100% full

- With 10% free, can almost always find one of them free
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So what did we gain?

• Performance improvements:

- Able to get 20-40% of disk bandwidth for large files

- 10-20x original Unix file system!

- Better small file performance (why?)

• Is this the best we can do? No.

• Block based rather than extent based

- Could have named contiguous blocks with single pointer and
length (Linux ext2fs, XFS)

• Writes of metadata done synchronously

- Really hurts small file performance

- Make asynchronous with write-ordering (“so7 updates”) or
logging/journaling. . . more next lecture

- Play with semantics (/tmp file systems)
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Other hacks

• Obvious:

- Big file cache

• Fact: no rotation delay if get whole track.

- How to use?

• Fact: transfer cost negligible.

- Recall: Can get 50x the data for only∼3%more overhead

- 1 sector: 5ms + 4ms + 5µs (≈ /( / ))≈ 9ms

- 50 sectors: 5ms + 4ms + .25ms = 9.25ms

- How to use?

• Fact: if transfer huge, seek + rotation negligible

- LFS: Hoard data, write out MB at a time

• Next lecture:

- FFS in more detail

- More advanced, modern file systems
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