and 1/0 buses

1/0 bus

1880Mbps 1056Mbps
= 3

» CPU accesses physical memory over a bus
» Devices access memory over I/O bus with DMA

» Devices can appear to be a region of memory

1/40

Realistic ~2005 PC architecture Modern PC architecture (intel)

: ‘ Advanced
CPU CPU Programable
Interrupt
L] fr,gnt— Controller
Bis bus
us
AGP North Main
bus ~ Bridge memory
Pl pcl | 1/0
bus IRQs7 apic
South
ISA
bus

QPI QPI
PCl express x58 IOH
DMI
e St
SATA 6 ports)
System Management
el Figh Dot Intel® _
i
Intel® Gigabit Ethernet Phy |—2C! orous U SPI Flash
LCI
JTAG" (Corporate Only) s s
e
Other ASIC: LPC I'F
(Optional) -Super 1o
lintel]
2o 3/40

What is I/0 bus? E.g., PCI Communicating with a device

» SRAM - Static RAM
- Like two NOT gates circularly wired input-to-output
- 4-6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory
DRAM - Dynamic RAM
- Acapacitor + gate, holds charge to indicate bit value
- 1transistor per bit - extremely dense storage
- Charge leaks - need slow comparator to decide if bit 1or 0
- Must re-write charge after reading, and periodically refresh
VRAM - “Video RAM”
- Dual ported DRAM, can write while someone else reads

4/40

:
monitor ‘ ‘ processor ‘ §
| —
gmﬁ ‘ i i SCSl controller
L ! i “ PCI bus I .)
‘ IDE disk controller ‘ ’

» Memory-mapped device registers
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions - not real memory

» Device memory - device may have memory OS can write to
directly on other side of /0 bus
» Special I/O instructions
- Some CPUs (e.g., x86) have special I/0 instructions
- Like load & store, but asserts special I/O pin on CPU
- 0OS can allow user-mode access to 1/O ports at byte granularity
» DMA - place instructions to card in main memory

- Typically then need to “poke” card by writing to register
- Overlaps unrelated computation with moving data over (typically
slower than memory) 1/0 bus

5/40 6/40

x86 1/0 instruction Example: parallel port (LPT1) Writing bit to parallel port [osdev]

static inline uint8_t » Simple hardware has three control registers:
inb (uint16_t port) void
{ [or [06 [05 [0a |05 [Do] 0y [05]

5 . sendbyte (uint8_t byte)
uint8_t data; read/write data register (port 0x378)

asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port)); ‘ BSY ‘ ACK ‘ PAP ‘OFON‘ m‘ _ ‘ _ ‘ _ ‘ /% Wait until BSY bit is 1. */

return data; read-only status register (port 0x379) while ((inb (0x379) & 0x80) == 0)
} _ delay O;

[- [-] - [mo[osL|[ini][aF][sR] m™]

static inline void) . read]write control register (port 0x37a) . . /* Put the byte we wish to send on pins D7-0. */
outb (uint16_t port, uint8_t data) « Every bit except IRQ corresponds to a pin on 25-pin connector: outb (0x378, byte);
{

asm volatile ("outb %b0, %wl" : : "a" (data), "Nd" (port)); 21 D /* Pulse STR (strobe) line to inform the printer
} 330 :E BA?:Y(* that a byte is available */

Ground 221 »9) 7 uint8_t ctrlval = inb (0x37a);

2111

static inline void 201 >8 6 outb (0x37a, ctrlval | 0x01);

insw (uint16_t port, void *addr, size_t cnt) 191 5 .
{ i DSL 121 30at2 0wt dei-iy((?;ﬁ trlval)
17 ou x37a, ctrlval);
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt) INI 16: % } ’ ’
) "d" (port) : "memory"); EARL[: ﬁ: gTR
7740 [image credits: Wikipedia] 8/40 9/40

IDE disk driver Memory-mapped IO DMA buffers

void IDE_ReadSector(int disk, int off, void *buf)

[o in/out instructions slow and clunky "ﬂ”i"y buffers
outb(0x1F6, disk == 0 ? OxEO : OxF0); // Select Drive - Instruction format restricts what registers you can use]
IDEWait () ; 16 i

; - On ws 2'6 differen rt number
outb(0x1F2, 1); // Read length (1 sector = 512 B) Only allows different port numbers)
outb(0x1F3, off); // LBA low - Per-port access control turns out not to be useful
outb(0x1F4, off >> 8); // LBA mid (any port access allows you to disable all interrupts))
tb(0x1F5, off >> 16); LBA high
‘g;bﬁoﬁm %009 ;) % Fond B 4 « Devices can achieve same effect with physical addresses, e.g.:
insw(0x1F0, buf, 256); // Read 256 words volatile int32_t *device_control

} = (int32_t *) (0xc0100 + PHYS_BASE);)y
. . *device_control = 0x80;

void IDEWait() int32_t status = *device_control; Buffer

{ descriptor

// Discard status 4 times list
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7); » Assign physical addresses at boot to avoid conflicts. PCI:
// Wait for status BUSY flag to clear

while ((inb(0x1F7) & 0x80) != 0)

- OS must map physical to virtual addresses, ensure non-cachable
» ldea: only use CPU to transfer control requests, not data

)) .) « Include list of buffer locations in main memory
- Slow/clunky way to access configuration registers on device

Use that to assien ranges of physical addresses to device - Device reads list and accesses buffers through DMA
) i '8 8 physt VI - Descriptions sometimes allow for scatter/gather I/O

10/40 /40 12/40

Example: Network Interface Card Example: IDE disk read w. DMA Driver architecture

1. device driver is told
to transfer disk data CPU
to buffer at address X

» Device driver provides several entry points to kernel

5. DMA controller 2. device driver tells - Reset, ioctl, output, interrupt, read, write, strategy ...
2 transfers bytes to disk controller to
2z — Network link buffer X, increasing transfer C bytes » How should driver synchronize with card?
= memory address from disk to buffer cache . .
% — T and decreasing C at address X - E.g., Need to know when transmit buffers free or packets arrive
T . - Need to k hen disk t let
DMA/bus/ eed to know when disk request complete
Adaptor 6. when C = 0, DMA p —~ X
interrupts CPU to signal izl CRUmemory,bus.) memory « One approach: Polling
" controller
transfer completion))
[- Sent a packet? Loop asking card when buffer is free
« Link interface talks to wire/fiber/antenna S S — T P — - Waiting to receive? Keep asking card if it has packet
- Typically does framing, link-layer CRC] 3, disk controller initiates - Disk /0? Keep looping until disk ready bit set
: . IDE disk DMA transfer . AP,
« FIFOs on card provide small amount of buffering e ——— « Disadvantages of polling?

« Businterface logic uses DMA to move packets to and from e ~
buffers in main memory

13/40 14/40 15/40

Driver architecture Interrupt driven devices Anatomy of a disk [Ruemmler]

« Device driver provides several entry points to kernel « Instead, ask card to interrupt CPU on events
- Reset, ioctl, output, interrupt, read, write, strategy ... - Interrupt handler runs at high priority .
« How should driver synchronize with card? - Asks card what happened (xmit buffer free, new packet) * Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

- E.g., Need to know when transmit buffers free or packets arrive - This is what most general-purpose OSes do

- Need to know when disk request complete » Bad under high network packet arrival rate
« One approach: Polling - Packets can arrive faster than OS can process them
- Interrupts are very expensive (context switch))
- Interrupt handlers have high priority - Arms rotate around pivot, all move together
- In worst case, can spend 100% of time in interrupt handler and - Pivot offers some resistance to linear shocks
. . never make any progress - receive livelock - Onedisk head per recording surface (2 x platters)
« Disadvantages of polling? - Best: Adaptive switching between interrupts and polling - Sensitive to motion and vibration [Gregg] (demo on youtube)
- Can’tuse CPU for anything else while polling

- Schedule pollin future? High latency to receive packet or process i L
disk block bad for response time » Rest of today: Disks (network devices in 3 lectures)

« Disk arm assembly
- Sent a packet? Loop asking card when buffer is free

- Waiting to receive? Keep asking card if it has packet
- Disk 1/0? Keep looping until disk ready bit set

» Very good for disk requests

15/40 16/40 17/40

Storage on a magnetic platter

Platters divided into concentric tracks
A stack of tracks of fixed radius is a cylinder
Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction
Generally only one head active at a time

- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned

18

40

) /40

track t

sector s

cylinder ¢

Cylinders, tracks, & sectors

- IR

rotation

e spindle

read-write
head

{— arm assembly

18/40

20/40

Disk positioning system

» Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.
» Aseek consists of up to four phases:
- speedup-accelerate arm to max speed or half way point
- coast-at max speed (for long seeks)
- slowdown-stops arm near destination
- settle-adjusts head to actual desired track
» Very short seeks dominated by settle time (~1 ms)
» Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g

18/40

» Disk interface presents linear array of sectors

» Head switches comparable to short seeks » Head switches comparable to short seeks
- May also require head adjustment - May also require head adjustment - Historically 512 B, but 4 KiB in “advanced format” disks
- Settles take longer for writes than for reads - Why? - Settles take longer for writes than for reads - Written atomically (even if there is a power failure)
If read strays from track, catch error with checksum, retry » Disk maps logical sector #s to physical sectors
If write strays, you’ve just clobbered some other track - Zoning-puts more sectors on longer tracks
« Disk keeps table of pivot motor power « Disk keeps table of pivot motor power - Track skewing-sector 0 pos. varies by track (why?)
- Maps seek distance to power and time - Maps seek distance to power and time - Sparing-flawed sectors remapped elsewhere
- Disk interpolates over entries in table - Disk interpolates over entries in table » 0S doesn’t know logical to physical sector mapping
- Table set by periodic “thermal recalibration” - Table set by periodic “thermal recalibration” - Larger logical sector # difference means longer seek time
- But, e.g., ~500 ms recalibration every ~25 min bad for AV - But, e.g., ~500 ms recalibration every ~25 min bad for AV - Highly non-linear relationship (and depends on zone)
» “Average seek time” quoted can be many things « “Average seek time” quoted can be many things - 0S has no info on rotational positions
- Time to seek 1/3 disk, 1/3 time to seek whole disk - Time to seek 1/3 disk, 1/3 time to seek whole disk - Can empirically build table to estimate times
22/40 22/40 23/40

« Disk interface presents linear array of sectors « Controls hardware, mediates access

- Historically 512 B, but 4 KiB in “advanced format” disks « Computer, disk often connected by bus (e.g., ATA, SCSI, SATA) * SCSl domain consists of devices and an SDS

- Written atomically (even if there is a power failure) - Multiple devices may contentd for bus - Devices: host adapters & SCSI controllers

. . . . L - Service Delivery Subsystem connects devices—e.g., SCSI bus
» Disk maps logical sector #s to physical sectors o Possible disk/interface features: .

- Zoning-puts more sectors on longer tracks « Disconnect from bus during requests * SCSI-2 bus (SDS) connects up to 8 devices

- Track skewing-sector 0 pos. varies by track (sequential access speed) - Controllers can have > 1“logical units” (LUNs)

- Sparing-flawed sectors remapped elsewhere * Command queuing: Give disk multiple requests - Typically, controller built into 'disk and 1LUN/target, but “bridge
A A . - Disk can schedule them using rotational information controllers” can manage multiple physical devices
» OS doesn’t know logical to physical sector mapping X X o
) .) o Disk cache used for read-ahead » Each device can assume role of initiator or target
- Larger logical sector # difference means longer seek time o
- Highly non-linear relationship (and depends on zone) Otherwise, sequentlf';\l reads would incur who!e revolution Traditionally, host ada[.)tletwas initiator, controller target
- Cross track boundaries? Can’t stop a head-switch - Now controllers act as initiators (e.g., cory command)

- 0S has no info on rotational positions !] >
- Can empirically build table to estimate times « Some disks support write caching - Typical domain has Tinitiator, > 1 targets

- But data not stable—not suitable for all requests

23/40 24/40 25/40

SCSI requests Executing SCSI commands SCSI exceptions and errors

* Each LUN maintains a queue of tasks « After error stop executing most SCSI commands
» Arequestis acommand from initiator to target . P g
Oq itted h Lofb g - Each task is DORMANT, BLOCKED, ENABLED, Of ENDED - Target returns with CHECK CONDITION status
- onee transml.tte » target has control of bus - SIMPLE tasks are dormant until no ordered/head of queue - Initiator will eventually notice error
- Target may disconnect from bus and later reconnect - ORDERED tasks dormant until no HoQ/more recent ordered - Must read specifics w. REQUEST SENSE

very important for multiple targets or even multitaskin .
(very imp P & gl - HoQ tasks begin in enabled state .
» Prevents unwanted commands from executing

- E.g., initiator may not want to execute 2nd write if 1st fails

» Commands contain the following:

. . A » Task management commands available to initiator
- Task identifier—initiator ID, target ID, LUN, tag

- Abort/terminate task, Reset target, etc.

- Command descriptor block—e.g., read 10 blocks at pos. N » Simplifies device implementation
- Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE ¢ Linked commands - Don’t need to remember more than one error condition
- Optional: output/input buffer, sense data - Initiator can link commands, so no intervening tasks

+ Same mechanism used to notify of media changes

- Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . . - E.g., could use to implement atomic read-modify-write)
- le., ejected tape, changed CD-ROM

- Intermediate commands return status byte INTERMEDIATE

26/40 27/40 28/40

Disk performance Scheduling: FCFS Scheduling: FCFS

» Placement & ordering of requests a huge issue
- Sequential I/0 much, much faster than random

- Long seeks much slower than short ones » “First Come First Served” » “First Come First Served”

- Power might fail any time, leaving inconsistent state - Process disk requests in the order they are received - Process disk requests in the order they are received
o Must be careful about order for crashes « Advantages » Advantages

- More on this in next two lectures - Easy to implement
» Try to achieve contiguous accesses where possible - Good fairness

- E.g., make big chunks of individual files contiguous « Disadvantages « Disadvantages
» Try to order requests to minimize seek times - Cannot exploit request locality

- 0S can only do this if it has a multiple requests to order - Increases average latency, decreasing throughput

- Requires disk I/O concurrency
- High-performance apps try to maximize 1/0 concurrency

» Next: How to schedule concurrent requests

29/40 30/40 30/40

FCFS example Shortest positioning time first (SPTF) Shortest positioning time first (SPTF)

queue = 98, 183, 37, 122, 14, 124, 65, 67 « Shortest positioning time first (SPTF) « Shortest positioning time first (SPTF)

head starts at 53 - Always pick request with shortest seek time - Always pick request with shortest seek time
? 114 3]7 5?6?167 9|8 122“1 24 1813 1 ?9 » Also called Shortest Seek Time First (SSTF) » Also called Shortest Seek Time First (SSTF)
' » Advantages » Advantages

- Exploits locality of disk requests
- Higher throughput
» Disadvantages » Disadvantages

- Starvation
- Don’t always know what request will be fastest

* Improvement?

31/40 32/40 32/40

Shortest positioning time first (SPTF) SPTF example “Elevator” scheduling (SCAN)

» Shortest positioning time first (SPTF) queue = 98, 183, 37, 122, 14, 124, 65, 67 » Sweep across disk, servicing all requests passed
- Always pick request with shortest seek time head starts at 53 - Like SPTF, but next seek must be in same direction

. Also called Shortest Seek Time First (SSTF) 0 14 37 536567 08 122124 183199 - Switch directions only if no further requests
— | LU | i — » Advantages

« Advantages
- Exploits locality of disk requests
- Higher throughput
» Disadvantages » Disadvantages
- Starvation

- Don’t always know what request will be fastest
« Improvement: Aged SPTF

- Give older requests higher priority

- Adjust “effective” seek time with weighting factor:
Tett = Tpos — W Toeait

32/40 33/40 34/40

“Elevator” scheduling (SCAN) CSCAN example VSCAN(r)

= Sweep across disk, servicing all requests passed queue 98, 183, 37, 122, 14, 124, 65, 67
- Like SPTF, but next seek must be in same direction head starts at 53 . Continuum between SPTE and SCAN

- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Tog = Tpos

- Switch directions only if no further requests 0 14 37 536567 98 122124 183199
| | I 1l [
[

» Advantages 1

- Takes advantage of locality Otherwise: Tog = Tpos + I+ Tnax
- Bounded waiting - whenr=0, get SPTF, when r =1, get SCAN
« Disadvantages - E.g.,r=0.2 works well
- Cylinders in the middle get better service » Advantages and disadvantages
- Might miss locality SPTF could exploit - Those of SPTF and SCAN, depending on how r is set
» CSCAN: Only sweep in one direction » See [Worthington] for good description and evaluation of
Very commonly used algorithm in Unix various disk scheduling algorithms

« Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)

34/40 35/40 36/40

Flash memory Types of flash memory NAND Flash Overview

» Today, people increasingly using flash memory

» Completely solid state (no moving parts) * NAND flash (most prevalent for storage) " Flash device has 2112-byte pages
) Repr]1eml3/ers data by storine char eg P - Higher density (most used for storage) - 2048 bytes of data + 64 bytes metadata & ECC
y & & - Faster erase and write » Blocks contain 64 (SLC) or 128 (MLC) pages

- Lower power consumption and heat

R A - More errors internally, so need error correction
- No mechanical seek times to worry about

« Blocks divided into 2-4 planes

« Limited # overwrites possible = NOR flash - All planes contend for same package pins
- Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases - Faster reads in smaller data units - But can access their blocks in parallel to overlap latencies
- Requires f[as'h trans[ai;ion layer (FTL) to provide wear leveling, so - C.an .e).<ecute code straight out of NOR flash « Can read one page at a time
repeated writes to logical block don’t wear out physical block - Significantly slower erases Takes 25 pisec + time to get data off chip
. . - 1
- FTL can seriously impact performance « Single-level cell (SLC) vs. Multi-level cell (MLC))
- In particular, random writes very expensive [Birrell] - MLC encodes multiple bits in voltage level = Must erase whole block before programing
» Limited durability - MLC slower to write than SLC - IIirase setsa'lll bits to1—v§rg/leern5|v.e (2 mse.c) - l
- Charge wears out over time - MLC has lower durability (bits decay faster) - Programming pre-erased block requires moving data to interna

- Turn off device for a year, you can potentially lose data buffer, then 200 (SLC)-800 (MLC) usec

37/40 38/40 39/40

Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

Block Size (Pages) 64 128
Read Latency (us) 25 25

Write Latency (us) 200 800

Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0

40/40

File system fun Why disks are different Disk vs. Memory

» Disk = First state we’ve seen that doesn’t go away

« File systems: traditionally hardest part of 0S Disk ML'SIES'?]ND DRAM
- More papers on FSes than any other single topic Smallest write sector sector byte
‘ Mal[l)1 tat:ks of flle(sysl;em: - So: Where all important state ultimately resides gg%?fnxv:étae d sg (r:;?s,r 3s-e1c0tc;|; by;eo/ vr;lsc‘)rd
- Don’t go away (ever, -
. Associgate byt)elzs with name (files) » Slow (milliseconds access vs. nanoseconds for memory) Random write 8ms 9-11 us* 50 ns
- Associate names with each other (directories) “°rmsa;'J'éSS Processor speed: 2/18mo gggﬂz:;:z: ;Sfi?e }88 mgﬁ 5538__125500(;),\;45/; i } ggg
- Canimplement file systems on disk, over network, in memory, in . . K
. ’ Disk access time: 7%/yr Cost $0.03/GB $0.35/GB $6/GiB
non-volatile ram (NVRAM), on tape, aper. ’ X , ” .
, vo'at . () 2P W/ pap Persistence Non-volatile | Non-volatile Volatile
- We'll focus on disk and generalize later year
«» Today: files, directories, and a bit of performance « Huge (100-1,000x bigger than memory) *Flash write performance degrades over time

- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

m Some useful trends Files: named bytes on disk

« Disk reads/writes in terms of sectors, not bytes « Disk bandwidth and cost/bit improving exponentially ile ab _—
- Read/write single sector or adjacent groups - Similar to CPU speed, memory size, etc. * Filea stra'ctlon.
» Seek time and rotational delay improving very slowly - User’s view: named sequence of bytes
- Why? require moving physical object (disk arm) - - ———
foo.c E - »
» Disk accesses a huge system bottleneck & getting worse
» How to write a single byte? “Read-modify-write” - Bandwidth increase lets system (pre-)fetch large chunks for about - FS’s view: collection of disk blocks
- Read in sector containing the byte the same cost as small chunk. - File system’s job: translate name & offset to disk blocks:
- Modify that byte - Trade bandwidth for latency if you can get lots of related stuff. {file, Oﬁfset}_>_>disk address
- Write entire sector back to disk |] « Desktop memory size increasing faster than typical workloads Fil tions:
- Key: if cached, don’t need to read in - More and more of workload fits in file cache ° Flle operations:

R - - Disk traffic changes: mostly writes and new data - Create afile, delete afile
* Sector =unit of atomicity. « Memory and CPU resources increasin - Read from file, write to file
- Sector write done completely, even if crash in middle y &
(disk saves up enough momentum to complete) - Use memory and CPU to make better decisions + Want: quratlons to have as few disk accesses as possible &
- Complex prefetching to support more 10 patterns have minimal space overhead (group related things)

» Larger atomic units have to be synthesized by 0OS o
- Delay data placement decisions reduce random 10

» Like page tables, file system metadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #

23— Pagetable |———33

- File metadata: map byte offset to disk block address

512————| Unixinode |———8003121

- Directory: map name to disk address or file #
foo.c————| directory |————44

Common addressing patterns Problem: how to track file’s data Straw man: contiguous allocation

« Sequential:
- File data processed in sequential order
- By far the most common mode
- Example: editor writes out new file, compiler reads in file, etc

» Random access:

- Address any block in file directly without passing through
predecessors
- Examples: data set for demand paging, databases

» Keyed access
- Search for block with particular values
- Examples: associative data base, index
- Usually not provided by OS

» FS performance dominated by # of disk accesses
- Say each access costs ~10 milliseconds
- Touch the disk 100 extra times = 1 second
- Cando a billion ALU ops in same time!
o Access cost dominated by movement, not transfer:
seek time + rotational delay -+ # bytes/disk-bw

« In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical
memory locations
= In some ways, FS has easier job than than VM:

- CPU time to do FS mappings not a big deal (= no TLB)

- Page tables deal with sparse address spaces and random access,
files often denser (0. .. filesize — 1), ~sequentially accessed

- 1sector: 5ms +4ms + 5.5 (~ 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms + 4ms +.25ms = 9.25ms
- Can get 50x the data for only ~3% more overhead!

» Observations that might be helpful:
- All blocks in file tend to be used together, sequentially
- Allfilesin a directory tend to be used together
- All names in a directory tend to be used together

» In some ways FS’s problem is harder:
- Each layer of translation = potential disk access
- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough
- Range very extreme: Many files <10 KB, some files many GB

» “Extent-based”: allocate files like segmented memory

- When creating a file, make the user pre-specify its length and
allocate all space at once
- Inode contents: location and size

| X |

file a/(base=1,len=3)

» Disk management:
- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block
- Structure tracking a file’s sectors is called an index node or inode
- Inodes must be stored on disk, too |

what happens if
| | file ¢ needs 2
sectors???

file b (base=5 len=2)

» Things to keep in mind while designing file structure:
- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files

- Want good sequential and good random access
(what do these require?)

« Example: IBM 0S/360

o Pros?
» Cons? (Think of corresponding VM scheme)

10/38 1/38

12/38

Straw man: contiguous allocation Straw man #2: Linked files Straw man #2: Linked files

« Basically a linked list on disk. « Basically a linked list on disk.
» “Extent-based”: allocate files like segmented memory - Keep a linked list of all free blocks - Keep a linked list of all free blocks
- When creating a file, make the user pre-specify its length and - Inode contents: a pointer to file’s first block - Inode contents: a pointer to file’s first block
allocate all space at once - In each block, keep a pointer to the next one - In each block, keep a pointer to the next one
- Inode contents: location and size how do you find] how do you find
what happens if LT the last block in a? LT the last block in a?
| | | | | file ¢ needs 2 L N | N, |
/t sectors???
file a’(base=1len=3) file b (base=5,len=2) file a (base=1) file b (base=5) file a (base=1) file b (base=5)
» Examples (sort-of): Alto, TOPS-10, DOS FAT » Examples (sort-of): Alto, TOPS-10, DOS FAT
« Example: IBM 0S/360 xamples (): Alto, g xamples (): Alto, g
« Pros? o Pros?
* Pros? - Easy dynamic growth & sequential access, no fragmentation
- Simple, fast access, both sequential and random « Cons? « Cons?
» Cons? (Think of corresponding VM scheme) - Linked lists on disk a bad idea because of access times
- External fragmentation - Random very slow (e.g., traverse whole file to find last block)

- Pointers take up room in block, skewing alignment

12/38 13/38 13/38

Example: DOS FS (simplified) FAT discussion FAT discussion

 Linked files with key optimization: puts links in fixed-size

“file allocation table” (FAT) rather than in the blocks. * Entry size =16 bits * Entry size =16 bits
Directory (5) FAT (16-bit entries) - What’s the maximum size of the FAT? - What’s the maximum size of the FAT? 65,536 entries
26 ol free . - Given a 512 byte block, what’s the maximum size of FS? - Given a 512 byte block, what’s the maximum size of FS? 32 MiB
N file a - One solution: go to bigger blocks. Pros? Cons? - One solution: go to bigger blocks. Pros? Cons?
b: 2 1 f g g8 g g8
= €0 4 B s s
2 1 E . . » Space overhead of FAT is trivial: » Space overhead of FAT is trivial:
3| eof - 2 bytes /512 byte block = ~ 0.4% (Compare to Unix) - 2 bytes /512 byte block = ~ 0.4% (Compare to Unix)
4| 3 fileb » Reliability: how to protect against errors? » Reliability: how to protect against errors?
5| eof . m - Create duplicate copies of FAT on disk - Create duplicate copies of FAT on disk
6 4 - State duplication a very common theme in reliability - State duplication a very common theme in reliability
« Bootstrapping: where is root directory? « Bootstrapping: where is root directory?
» Still do pointer chasing, but can cache entire FAT so can be - Fixed location on disk: | FATl (opt) FAT |r°°T dir| | - Fixed location on disk: | FATl (opt) FAT |r°°T dir| |

cheap compared to disk access

14/38 15/38 15/38

Another approach: Indexed files Another approach: Indexed files Indexed files

» Each file has an array holding all of its block pointers » Each file has an array holding all of its block pointers « Issues same as in page tables
- Just like a page table, so will have similar issues - Just like a page table, so will have similar issues [TTCITITITTITTTITITTI]+—2"20 entries!
- Max file size fixed by array’s size (static or dynamic?) - Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation - Allocate array to hold file’s block pointers on file creation L_
- Allocate actual blocks on demand using free list - Allocate actual blocks on demand using free list 2~32 file size / 4K blocks

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

- - - - » Solve identically: small regions with index array, this array
« Pros? file a file b o Pros? file a file b with another array, ... Downside?

- Both sequential and random access easy
» Cons? » Cons?

- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially

16/38 16/38 17/38

Multi-level indexed files (old BSD FS) Old BSD FS discussion More about inodes

« Solve problem of first block access slow « Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed

« Pros: - Lives in known location, originally at one side of disk:

data blocks Tpdirect M - Simple, easy to build, fast access to small files
stuff Pir 1 - Maximum file length fixed, but large. file blocks |

» inode =14 block pointers + “stuff”

Pir 1 /- ptr 2 * Cons: - Now is smeared across it (why?)
ptr 2 /v- - What is the worst case # of accesses?
ptr 3 /- ptr 128 - What is the worst-case space overhead? (e.g., 13 block file)
pir 4 Indirect bik « An empirical problem: 7 P . 7 |
ndirec S - Because you allocate blocks by taking them off unordered freelist, . . . - >
metadata and data get strewn across disk - Theindex of an inode in the inode array called an i-number
pir 13 / - Internally, the OS refers to files by inumber
ptr 14 - When file is opened, inode brought in memory

Double indirect block - Written back when modified and file closed or time elapses

18/38 19/38 20/38

A short history of directories Hierarchical Unix

» Used since CTSS (1960s) afs bin cdrom dev shin tmp

» Approach 1: Single directory for entire system

- Put directory at known location on disk - Unix picked up and used really nicely

awk chmod chown
+ Problem:

- Directory contains (name, inumber) pairs » Directories stored on disk just like regular files
- “Spend all day generating data, come back the next morning, want _ If one user uses a name, no one else can s)
to use it - F. Corbato, on why files/dirs invented Many ancient personal ycomputers Work this way - Specialinode type byte set to directory <name,inode#>
» Approach 0: Users remember where on disk their files are + Apbroach 2: Single directory for each user - User’s can read just like any other file <afs,1021>
. ’ " : . PP :olng Yy - Only special syscalls can write (why?) <tmp,1020>
E.g., like remembering your social security or bank account # - still clumsy, and 1s on 10,000 files is a real pain <bin 1022>
« Yuck. People want human digestible names . Approach 3: Hierarchical name spaces - Inodes at fixed disk location <cdrom,4123>
- We use directories to map names to file blocks .)) - File pointed to by the index may be <dev,1001>
- Allow directory to map names to files or other dirs another directory <sbin,1011>
 Next: What s in a directory and why? - File system forms a tree (or graph, if links allowed) - Makes FS into hierarchical tree (what .

- Large name spaces tend to be hierarchical (ip addresses, domain needed to make a DAG?)

names, scoping in programming languages, etc) » Simple, plus speeding up file ops speeds up dir ops!

21/38 22/38 23/38

» Bootstrapping: Where do you start looking? w Name space Physical organization
- Root directory always inode #2 (0 and 1 historically reserved)

» Cumbersome to constantly specify full path names

disk - In Unix, each process has a “current working directory” (cwd)

- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

» Special names:
- Root directory: “/”
- Currentdirectory: “.”
- Parent directory: “..”

» Shells track a default list of active contexts
What inode holds file for - A“search path” for programs you run

» Some special names are provided by shell, not FS:
- User’s home directory: “~”

- Globbing: “foo.” expands to all files starting “foo.” @ b?cc? - Given asearch pathA: B : C, a shell will check in A, then check in B,
« Using the given names, only need two operations to navigate then checkiin C . L
the entire name space: L, <b 5> - Can escape using explicit paths: “./foo
- cd name: move into (change context to) directory name » Example of locality

- 1s: enumerate all names in current directory (context)

24/38 25/38 26/38

Hard and soft links (synonyms) Case study: speeding up FS A plethora of performance costs

» More than one dir entry can refer to a given file

p b « Original Unix FS: Simple and elegant: » Blocks too small (512 bytes)
- Unix stores count of pointers N AT e - File index too large
(“hard links”) to inode AN t inodes data blocks (512 bytes) - Tl)o Iman);/ layersgof mapping indirection
L » inode #31279 i’
- I;nn;s)lfs% (;:r)f;;’r ;Izrfocoreates a refcount = 2 supler'block disk - Transfer rate low (get one block at time)
- » Poor clustering of related objects:
» Soft/symbolic links = synonyms for names » Components: c tive file blocks not clase togeth
: - Consecutive file blocks not close together
- Point to a file (or dir) name, but object can be deleted from .- - Data blocks Inodes far from data blocks 8
underneath it (or never even exist). f : + B
o (Lo o)) - Inodes (directories represented as files) - Inodes for directory not close together
- Unix implements like directories: inode has special - - Hard links - e)
“symlink” bit set and contains name of link target ’ . B - Poor enumeration performance: e.g., “1s”, “grep foo *.c
” - - Superblock. (specifies number of blks in FS, counts of max # of bili bl
/bar" | files, pointer to head of free list) ¢ Usability problems

1n -s /bar baz

baz —| refcount =1 » Problem: slow - 14-cf1aract§rfile names a.pain
- Can’t atomically update file in crash-proof way

- When the file.system encounters a symbolic link it automatically - Only gets 20Kb/sec (2% of disk maximum) even for sequential disk
translates it (if possible). transfers! » Next: how FFS fixes these (to a degree) [McKusic]

27/38 28/38 29/38

Problem: Internal fragmentation Solution: frag Clustering related objects in FFS

« Block size was too smallin Unix FS « BSD FFS: » Group sets of consecutive cylinders into “cylinder groups”
» Why not just make block size bigger? - Has large block size (4096 or 8192) - ":—':-_'-‘:\ 3

Block size | space wasted | file bandwidth - Allow large blocks to be chopped into small ones (“fragments”) Cylinder group 1 0"

512 6.9% 2.6% - Used for little files and pieces at the ends of files 2=

1024 11.8% 3.3% cylinder group 2\ e e />

2048 22.4% 6.4% ——

4096 45.6% 12.0% \’ 1= :‘ 3

1MB 99.0% 97.2% —_—— 0

. . . . Best to eliminate int T tation? - Key: can access any block in a cylinder without performing a seek.
« Bigger block increases bandwidth, but how to deal with ¢ bestway 1o eliminate Internal iragmentation? Next fastest place is adjacent cylinder.
wastage (“internal fragmentation”)? - Variable sized splits of course - Tries to put everything related in same cylinder group

- Use idea from malloc: split unused portion. - Why does FFS use fixed-sized fragments (1024, 2048)? - Tries to put everything not related in different group

30/38 31/38 32/38

Clustering in FFS What does disk layout look like? Finding space for related objs

» Tries to put sequential blocks in adjacent sectors » Each cylinder group basically a mini-Unix file system:
- (Access one block, probably access next) cylinder » Old Unix (& DOS): Linked list of free blocks

roups
P superblocks - Just take a block off of the head. Easy.

ilea ileb ! ! ! ! +—
3 f ! ! ! ! head g
* Tries to keep |n9de n same‘cyllnd.er asfile data: t,’ﬁ%krhsg&')nng - Bad: free list gets jumbled over time. Finding adjacent blocks hard
- (If you look at inode, most likely will look at data too) ¢ and slow
- inodes data blocks | « FFS: switch to bit-map of free blocks
« How how to ensure there’s space for related stuff? - 1010101111111000001111111000101100
- Place different directories in different cylinder groups - Easier to find contiguous ?IOCkS.')
. - Keep a “free space reserve” so can allocate near existing things - Small, so usually keep entire thing in memory
» Tries to keep allinodes in a dir in same cylinder group - When file grows too big (IMB) send its remainder to different - Time to find free block increases if fewer free blocks
- Access one name, frequently access many, e.g., “1s -1” cylinder group.

33/38 34/38 35/38

» Usually keep entire bitmap in memory: » Performance improvements: ¢ Ob‘g,mf'i: h
- 4G disk / 4K byte blocks. How big is map? - Able to get 20-40% of disk bandwidth for large files - Pigitecac ‘e .
- 10-20x original Unix file system! » Fact: no rotation delay if get whole track.
« Allocate block close to block x? xoriginatunix tile system: _ How to use?

- i ?
- Check for blocks near bmap [x/32] Better small file performance (why?) « Fact: transfer cost negligible.

. i) i ?
- If d's'k almost empty, will likely find one near) + Is this the best we can do? No. - Recall: Can get 50x the data for only ~3% more overhead
N é:f;jclikllgecomes full, search becomes more expensive and less « Block based rather than extent based - 1sector: 5ms +4ms + 55 (~ 512 B/(100 MB/s)) ~ 9ms
- Could have named contiguous blocks with single pointer and - 50 sectors: 5ms +4ms +.25ms = 9.25ms
» Trade space for time (search time, file access time) length (Linux ext2fs, XFS) - How to use?
» Keep areserve (e.g, 10%) of disk always free, ideally » Writes of metadata done synchronously « Fact: if transfer huge, seek + rotation negligible
scattered across disk - Really hurts small file performance - LFS: Hoard data, write out MB at a time
- Don’t tell users (df can get to 110% full) - Make asynchronous with write-ordering (“soft updates”) or » Next lecture:
- Only root can allocate blocks once FS 100% full logging/journaling... more next lecture - FFS in more detail

- With 10% free, can almost always find one of them free - Play with semantics (/tmp file systems) - More advanced, modern file systems

36/38 37/38 38/38

