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ABSTRACT
Programs operating “close to the metal” necessarily handle
memory directly. Because of this, they must be written in
languages like C or C++. These languages lack any kind
of guarantee on memory or race safety, often leading to se-
curity vulnerabilities and unreliable software. Ideally, we
would like a practical language that gives programmers di-
rect control over memory and aliasing while also offering
race and memory safety guarantees.

We present Rusty Types and an accompanying type sys-
tem, inspired by the Rust language, that enable memory-safe
and race-free references through ownership and restricted
aliasing in the type system. In this paper, we formally de-
scribe a small subset of the syntax, semantics, and type sys-
tem of Metal, our Rust-based language that enjoys Rusty
Types. Our type system models references and ownership
as capabilities, where bindings have indirect capabilities on
value locations. We also present speculative extensions to
Rusty Types that allow greater flexibility in single threaded
programs while maintaining the same guarantees.

1. WHAT MAKES TYPES RUSTY?
Take a large satchel. Toss in linear types [7], ownership

types [2], unique types [4], alias types [6], borrowing [5], per-
missions [1], and capabilities [3]. Add flexibility, practicality,
and mix thoroughly for 25 years. If all goes well, you will
find Rusty Types in your satchel.

1.1 Linearity
Except for immutable references, all Rusty Types behave

linearly. This means that exactly one binding to a given ob-
ject is allowed at any point in the program. In other words,
variables may not actively alias the same object. When a
binding attempts to alias an object using an existing vari-
able, the existing variable becomes unusable. The object is
moved to the new variable, and the new variable owns the
object. For example, in the following Rust-like program,
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1 let x = Vector([1, 2, 3]);
2 let y = x;

the Vector initially owned by x is moved to y in line 2.
Any appearance of x after the move is a type error. This
behavior applies to fields of structures, and fields of fields of
structures, and so on, leading to partially moved objects.

1.2 Memory Safety and Race Freedom
Rusty Types are designed for programs that require or

would benefit from unmanaged, direct references to mem-
ory. Unlike most existing languages with such references,
programs written with Rusty Types are statically guaran-
teed to be memory-safe and race-free.

Rusty Types maintain several key invariants that lead to
memory and race safety. To start, every storage location is
guaranteed to have either: (a) 1 mutable reference and 0
immutable references to it, or (b) 0 mutable references and
n immutable references to it. This invariant directly pre-
vents races as it prohibits concurrent writers and readers to
a single memory location. By itself, however, this invariant
is not enough to guarantee memory safety, especially in the
presence of moveable objects. For instance, since a given
variable becomes unusable after its object has been moved,
the storage locations associated with that variable may be
reused or freed. As a result, any references to that variable
will be dangling and invalid after a move.

To prevent this, Rusty Types also ensure that each object
has a unique binding, the owner, and that references to an
object or its contents are created transitively through its
owner. The type system guarantees that an object’s owner
does not change (the result of a move) while references are
outstanding. Conversely, the type system allows change of
ownership when there are no outstanding references.

Together, these invariants ensure that no references are
left dangling or pointing to invalid memory. As an example,
consider the following Rust-like program:

1 let mut x = Vector([1, 2, 3]);
2 let y = &x[0];
3 clear(&mut x);
4 let z = *y;

In the program above, Vector is a container type, itself a
value, that holds a pointer to a heap allocated array, initial-
ized here with 1, 2, and 3. The variable x is bound mutably
to this vector. The mut annotation on x allows both the
variable x to be rebound and the vector to be mutated. y
holds an immutable reference (so it can’t modify the under-
lying object) to the first element of the vector. The clear
function takes in a mutable reference to the vector in x and
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deallocates the internal array of the passed-in vector, re-
moving all of the elements. The last line in the program
dereferences y and stores the value in z.

Is this program memory safe? No! Since y holds a refer-
ence to the vector’s first element, and the array where the
element resides will be deallocated by the call to clear, y
will hold a dangling pointer after clear returns, making
the dereference on line 4 undefined. Rusty Types statically
disallow this program. This is because y’s immutable refer-
ence to x[0] on line 2 prohibits the mutable reference to x
on line 3, even though the references would point to distinct
memory locations, since they descend from the same owner.

1.3 (Re)borrowing
As mentioned earlier, borrowing is the act of creating ref-

erences (known as borrows) from, or creating a pointer to,
objects or their fields. Reborrowing, then, is doing the same
but through an existing borrow. Borrowing or reborrowing
from a mutable object must render that object immutable or
unusable to maintain the invariants described earlier. The
original object may be restored its mutability or usability if
all of its borrows can be shown to be unusable.

The syntax “&” is used to take an immutable borrow,
where the underlying object may not be mutated, while
“&mut” is used to take a mutable borrow, where mutation
of the underlying object is allowed. To illustrate, consider
the following program:

1 let mut x = V(..); // x: write
2 let a = &mut x; // x: []; *a: write, a: read
3 let b = &(*a); // *a: read; {*b, b}: read

The comments to the right demonstrate the changes to
variables’ capabilities on each line. We describe these now.
The variable x is declared mutable, so it begins with write
capabilities on its contents. When x is borrowed mutably on
line 2, x must become unusable to maintain the “1 mutable
reference”invariant. As a result, it loses all of its capabilities;
a gains the capability to read its contents (the borrow) as
well as write capabilities through its borrow (via *a) to the
underlying object x. On line 3, x is reborrowed immutably
through a. This results in a losing its ability to write x
though *a, leaving both *a and *b with read access to x.
Note that x does not regain its ability to read its contents
because the mutable borrow in a remains outstanding.

If all borrows to a mutable object are inaccessible, then it
is safe to allow that object to be mutated again. With Rusty
Types, capabilities can be restored at function boundaries.
Consider the following type signature for clear from the
example in §1.2:

1 fn clear(vector: &mut Vector);

This function can be called as clear(&mut x). After a call
to clear, the mutable borrow of x is said to be returned.
As such, x may be borrowed mutably once more, as in the
following program:

1 let mut x = Vector([1, 2, 3]);
2 clear(&mut x);
3 let y = &mut x;

Rusty Types determine whether a borrow outlives a func-
tion call based solely on the function’s signature. The intu-
ition is that a borrow is not returned from a function call
if the function’s signature indicates that the borrow may
outlive, or be stored as a result of, the function call.
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